extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1C23 = S3×D8 | φ: C23/C2 → C22 ⊆ Aut C12 | 24 | 4+ | C12.1C2^3 | 96,117 |
C12.2C23 = D8⋊S3 | φ: C23/C2 → C22 ⊆ Aut C12 | 24 | 4 | C12.2C2^3 | 96,118 |
C12.3C23 = D8⋊3S3 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | 4- | C12.3C2^3 | 96,119 |
C12.4C23 = S3×SD16 | φ: C23/C2 → C22 ⊆ Aut C12 | 24 | 4 | C12.4C2^3 | 96,120 |
C12.5C23 = Q8⋊3D6 | φ: C23/C2 → C22 ⊆ Aut C12 | 24 | 4+ | C12.5C2^3 | 96,121 |
C12.6C23 = D4.D6 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | 4- | C12.6C2^3 | 96,122 |
C12.7C23 = Q8.7D6 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | 4 | C12.7C2^3 | 96,123 |
C12.8C23 = S3×Q16 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | 4- | C12.8C2^3 | 96,124 |
C12.9C23 = Q16⋊S3 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | 4 | C12.9C2^3 | 96,125 |
C12.10C23 = D24⋊C2 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | 4+ | C12.10C2^3 | 96,126 |
C12.11C23 = C2×D4⋊S3 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | | C12.11C2^3 | 96,138 |
C12.12C23 = D12⋊6C22 | φ: C23/C2 → C22 ⊆ Aut C12 | 24 | 4 | C12.12C2^3 | 96,139 |
C12.13C23 = C2×D4.S3 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | | C12.13C2^3 | 96,140 |
C12.14C23 = C2×Q8⋊2S3 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | | C12.14C2^3 | 96,148 |
C12.15C23 = Q8.11D6 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | 4 | C12.15C2^3 | 96,149 |
C12.16C23 = C2×C3⋊Q16 | φ: C23/C2 → C22 ⊆ Aut C12 | 96 | | C12.16C2^3 | 96,150 |
C12.17C23 = D4⋊D6 | φ: C23/C2 → C22 ⊆ Aut C12 | 24 | 4+ | C12.17C2^3 | 96,156 |
C12.18C23 = Q8.13D6 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | 4 | C12.18C2^3 | 96,157 |
C12.19C23 = Q8.14D6 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | 4- | C12.19C2^3 | 96,158 |
C12.20C23 = C2×D4⋊2S3 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | | C12.20C2^3 | 96,210 |
C12.21C23 = D4⋊6D6 | φ: C23/C2 → C22 ⊆ Aut C12 | 24 | 4 | C12.21C2^3 | 96,211 |
C12.22C23 = C2×S3×Q8 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | | C12.22C2^3 | 96,212 |
C12.23C23 = C2×Q8⋊3S3 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | | C12.23C2^3 | 96,213 |
C12.24C23 = Q8.15D6 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | 4 | C12.24C2^3 | 96,214 |
C12.25C23 = S3×C4○D4 | φ: C23/C2 → C22 ⊆ Aut C12 | 24 | 4 | C12.25C2^3 | 96,215 |
C12.26C23 = D4○D12 | φ: C23/C2 → C22 ⊆ Aut C12 | 24 | 4+ | C12.26C2^3 | 96,216 |
C12.27C23 = Q8○D12 | φ: C23/C2 → C22 ⊆ Aut C12 | 48 | 4- | C12.27C2^3 | 96,217 |
C12.28C23 = C2×C24⋊C2 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | | C12.28C2^3 | 96,109 |
C12.29C23 = C2×D24 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | | C12.29C2^3 | 96,110 |
C12.30C23 = C4○D24 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | 2 | C12.30C2^3 | 96,111 |
C12.31C23 = C2×Dic12 | φ: C23/C22 → C2 ⊆ Aut C12 | 96 | | C12.31C2^3 | 96,112 |
C12.32C23 = C8⋊D6 | φ: C23/C22 → C2 ⊆ Aut C12 | 24 | 4+ | C12.32C2^3 | 96,115 |
C12.33C23 = C8.D6 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | 4- | C12.33C2^3 | 96,116 |
C12.34C23 = C22×Dic6 | φ: C23/C22 → C2 ⊆ Aut C12 | 96 | | C12.34C2^3 | 96,205 |
C12.35C23 = S3×C2×C8 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | | C12.35C2^3 | 96,106 |
C12.36C23 = C2×C8⋊S3 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | | C12.36C2^3 | 96,107 |
C12.37C23 = C8○D12 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | 2 | C12.37C2^3 | 96,108 |
C12.38C23 = S3×M4(2) | φ: C23/C22 → C2 ⊆ Aut C12 | 24 | 4 | C12.38C2^3 | 96,113 |
C12.39C23 = D12.C4 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | 4 | C12.39C2^3 | 96,114 |
C12.40C23 = C22×C3⋊C8 | φ: C23/C22 → C2 ⊆ Aut C12 | 96 | | C12.40C2^3 | 96,127 |
C12.41C23 = C2×C4.Dic3 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | | C12.41C2^3 | 96,128 |
C12.42C23 = D4.Dic3 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | 4 | C12.42C2^3 | 96,155 |
C12.43C23 = C2×C4○D12 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | | C12.43C2^3 | 96,208 |
C12.44C23 = C6×D8 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | | C12.44C2^3 | 96,179 |
C12.45C23 = C6×SD16 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | | C12.45C2^3 | 96,180 |
C12.46C23 = C6×Q16 | φ: C23/C22 → C2 ⊆ Aut C12 | 96 | | C12.46C2^3 | 96,181 |
C12.47C23 = C3×C4○D8 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | 2 | C12.47C2^3 | 96,182 |
C12.48C23 = C3×C8⋊C22 | φ: C23/C22 → C2 ⊆ Aut C12 | 24 | 4 | C12.48C2^3 | 96,183 |
C12.49C23 = C3×C8.C22 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | 4 | C12.49C2^3 | 96,184 |
C12.50C23 = Q8×C2×C6 | φ: C23/C22 → C2 ⊆ Aut C12 | 96 | | C12.50C2^3 | 96,222 |
C12.51C23 = C3×2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C12 | 24 | 4 | C12.51C2^3 | 96,224 |
C12.52C23 = C3×2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C12 | 48 | 4 | C12.52C2^3 | 96,225 |
C12.53C23 = C6×M4(2) | central extension (φ=1) | 48 | | C12.53C2^3 | 96,177 |
C12.54C23 = C3×C8○D4 | central extension (φ=1) | 48 | 2 | C12.54C2^3 | 96,178 |
C12.55C23 = C6×C4○D4 | central extension (φ=1) | 48 | | C12.55C2^3 | 96,223 |